Abstract

Bone morphogenetic proteins (BMPs) delivered on scaffolds can induce ectopic bone formation after subcutaneous injection. Adenoviral vectors (Ad) carrying BMP2, BMP7, and BMP9 cDNAs have been shown to produce bone through endochondral ossification. The present study was performed to elucidate the histological events leading to ectopic ossification for two novel first-generation adenoviral constructs encoding BMPs, AdBMP4 and AdBMP6. In vitro, the viral constructs produced and secreted the mature BMP4 and BMP6 proteins. In vivo, the calf muscles of athymic nude rats were injected with AdBMP4, AdBMP6, AdBMP2, or AdlacZ. Rats were sacrificed 3, 6, 9, 16, 21, 60, and 90 days postinjection. Whereas AdBMP4 produced ectopic bone through mechanisms similar to endochondral ossification, AdBMP6 seemed to induce bone by way of mechanisms similar to both intramembranous and endochondral ossification pathways. At the relatively low vector dose used in this study, AdBMP2 caused an initial recruitment of primitive mesenchymal cells, without further development to bone. From computed tomographic analysis, AdBMP6 produced the most rapid tissue calcification. The ultimate density of ectopic bone formed by AdBMP4 and AdBMP6 was comparable. The current study demonstrates that AdBMP4 and AdBMP6 are more potent than the prototypical osteogenic adenoviral vector AdBMP2 and seem to induce ectopic bone by different mechanisms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.