Abstract

APETALA1 (AP1), CAULIFLOWER (CAL) and FRUITFULL (FUL) were homologous genes with redundant functions in the process of flower transformation and floral development in Arabidopsis. Two CALs genes, MiCAL1 and MiCAL2, were cloned from mango (Mangifera indica L.). Their full-length sequences contained 717 bp and 714 bp, encoding 239 and 238 amino acids, respectively. Both the MiCAL1 and MiCAL2 proteins contained typical MADS-box and K-box domains and therefore belonged to the CAL-like protein family. MiCAL1 and MiCAL2 were expressed in all tissues at the inflorescence elongation stage and flowering stage, with the highest expression in the leaves at the flowering stage. They had similar expression patterns during flower development, with the highest expression levels in leaves during flower differentiation and the lowest expression levels during fruit development. Overexpression of MiCAL1 and MiCAL2 resulted in significantly earlier flowering in Arabidopsis. Overexpression of MiCAL1 resulted in terminal flowers with normal flower organs, while overexpression of MiCAL2 induced partially variation in floral organs but had no effect on inflorescences. Yeast two-hybrid (Y2H) experiments showed that MiCAL1 and MiCAL2 can interact with several flower-related proteins as well as stress response proteins, such as SEP1, SVP1, SVP2, SOC1G and Di19-4. These results suggest that these two MiCALs genes may have an important influence on mango flowering.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call