Abstract

Corticotrophin-releasing factor (CRF) and urocortin possess a high-affinity binding protein. Although the CRF binding protein (BP) can sequester these ligands and inhibit their activity, the endogenous activity of this protein is not understood. Therefore, transgenic mouse lines that over-express the CRF-BP were created. The transgene was constructed by ligating rat CRF-BP cDNA (1.1 kb) between a mouse metallothionein-I promoter (1.8 kb) and a nonfunctional human growth hormone gene sequence (2.1 kb) in a modified pBR322 plasmid and microinjecting the transgene into C57BL/6 x SJL hybrid ova. The transgene was expressed in 50% in both male and female progeny. All transgenic lines were maintained by crossing transgenic animals with wild-type C57BL/6 mates. Reverse-transcriptase (RT) PCR of the CRF-BP transgene showed that it is widely expressed not only in the brain and pituitary, but also peripheral tissues including the liver, kidney and spleen. Transgenic animals of both sexes showed significant increases in weight gain as established by analysis of variance; however, the weight gain profiles for each sex were distinct. High levels of circulating CRF-BP were detected in the transgenic animals, but the basal ACTH and corticosterone levels were not significantly decreased compared to wild-type littermates. The hypothalamopituitary-adrenal (HPA) axis was stimulated by systemic inflammation induced with lipopolysaccharide (LPS). An expected increase in transgene expression was observed and was accompanied by a significant attenuation of ACTH secretion at 3 h after LPS injection in the transgenic males but not the females. These data suggest that HPA axis regulation is significantly affected only with very high circulating levels of CRF-BP. Moreover, this work supports previous studies that implicate CRF and urocortin in the regulation of appetite and the binding protein expression may play a sexually dimorphic role in regulating this and other responses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call