Abstract

The DEAD-Box RNA helicase OsTOGR1 positively regulates heat stress tolerance in Chinese cabbage. Non-heading Chinese cabbage (Brassica rapa L. ssp. chinensis) is primarily cultivated vegetable crop in Asian countries. Heat stress is one of the major threats for its growth and yield. Numerous regulatory genes in various crops have shown to contribute thermotolerance. Among them, Thermotolerant growth required 1 (TOGR1) is an important DEAD-box RNA helicase. To examine whether its role is conserved in other crops, we constructed pCAMBIA1300-pHSP:OsTOGR1 expression vector driven by the rice small heat shock protein promoter (pHSP17.9) and successfully produced transgenic non-heading Chinese cabbage plants expressing OsTOGR1 gene via Agrobacterium-mediated vacuum infiltration transformation. In total, we generated three independent transgenic cabbage lines expressing TOGR1 gene. Expression and integration of TOGR1 was confirmed by PCR, RT-PCR and qPCR in T1 and T2 generations. The relative leaf electrical conductivity of transgenic seedlings was reduced subjected to high temperature (38°C) compared to heat shock treatment (46°C). In addition, hypocotyl length of transgenic seedlings increased compared to wild-type plants under high temperature and heat shock treatment. Furthermore, the transgenic plants exhibited higher chlorophyll content than wild-type plants under high temperature and heat shock treatment. The transgenic seeds displayed better germination under heat shock treatment. Tested heat stress-responsive genes were also up-regulated in the transgenic plants subjected to high temperature or heat shock treatment. To the best of our knowledge, this is the first report on describing the role of DAED-Box RNA helicases in improving heat stress tolerance of transgenic plants.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call