Abstract

Neurogenin 3 (NEUROG3), a basic helix-loop-helix transcription factor that is needed for endocrine cell development in the embryonic pancreas, has been shown to induce transdifferentiation of duct cells from adult pancreas towards a neuro-endocrine phenotype. Our study explored the endocrine transdifferentiation potential of NEUROG3 in neonatal pancreatic precursor cells. A replication-deficient adenovirus expressing Neurog3 and green fluorescent protein (GFP) (Ad-NEUROG3) was used to infect neonatal pig pancreatic cell preparations enriched for endocrine islet and cytokeratin-positive precursor cells. GFP-positive cells were sorted using flow cytometry on days 3 and 8 after infection and characterised at the transcript and protein level. For in vivo experiments, the total population of Ad-NEUROG3-infected pancreatic cells was transplanted, then later removed for determination of graft hormone content and immunohistochemistry. Among the GFP-positive cells, the fraction of precursor cells decreased by more than 85% at day 8 after infection, while the fraction of glucagon-positive cells increased 2.5-fold and the beta cell number remained the same. Transplantation of the Ad-NEUROG3-infected pancreatic cell preparation failed to reverse streptozotocin-induced hyperglycaemia, while non-infected cells and a control cell preparation infected with replication-deficient adenovirus expressing only GFP were able to do so. At day 109 after transplantation, kidneys grafted with Ad-NEUROG3-infected pancreatic cells contained significantly decreased insulin and increased glucagon levels. Abundant glucagon-immunopositive cells were seen in Ad-NEUROG3-infected grafts, which were virtually devoid of proliferating insulin-positive cells. In summary, adenoviral delivery of NEUROG3 to pancreatic precursor cells from neonatal pig pancreas promotes alpha cell differentiation in vitro and in vivo.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.