Abstract

Estrogens stimulate proliferation of estrogen receptor positive MCF7 breast cancer cells while antiestrogens signal a G0/G1 growth arrest. In MCF7 cells, arrest is mediated through the CDK inhibitors p21 and p27 and through a decrease in cyclin E/CDK2 kinase activity. We found that in MCF7 cells, overexpression of cyclin E partially abrogates a tamoxifen mediated growth arrest. Overexpression of cyclin E is accompanied by a decrease in the levels of RB and CDK inhibitor p21 but an increase in CDK inhibitor p27. Cyclin E overexpression also alters the composition of E2F transcription factor complexes. The E2F4/p107/cyclin E/CDK2 complex, a minor component in proliferating control cells that is absent in growth-arrested cells, is more abundant in both proliferating and tamoxifen treated cyclin E overexpressing cells. Conversely, levels of the quiescence associated E2F/p130 complex is not detected in these cells. Expression from the E2F dependant promoter is elevated in proliferating and tamoxifen treated cyclin E overexpressing cells. This study suggests that a modest overexpression of cyclin E abrogates the tamoxifen mediated growth arrest through modification of the RB/E2F pathway. Moreover, these results provide one explanation of why some cells that express the estrogen receptor may be unresponsive to antiestrogens.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.