Abstract

Doublecortin (DCX) is one of the three genes found from Affymetrix gene chip analysis related to glioma patient survival. Two other genes (e.g., osteonectin and semaphorin 3B) are well characterized as antioncogenic and tumor suppressor genes. However, there is no report about the involvement of DCX in cancer. Here, we show that gene transfer technology into DCX-deficient glioblastoma cell lines, such as A172, U87, U251N, RG2, and 9L, with DCX cDNA significantly suppressed growth of these glioma cells. U87 cells with ectopic expression of DCX exhibit a marked suppression of the transformed phenotype as growth arrested in the G(2) phase of the cell cycle progression, small colony formation in soft agar, and no tumor formation in nude rats. This transformed phenotype can be restored by knocking down DCX expression with DCX small interfering RNA. DCX was highly phosphorylated in glioma cells. Phosphorylation in the glioma cells was greater than in noncancer cells such as mouse NIH 3T3 and human embryonic kidney 293T cells. Coimmunoprecipitation of the phosphorylated DCX and spinophilin/neurabin II from DCX-synthesizing glioma cells indicated their interaction. This interaction would lead to a block of anchorage-independent growth as neurabin II is a synergistic inhibitor of anchorage-independent growth with p14ARF (ARF). Interaction between phosphorylated DCX and neurabin II may induce the association of the protein phosphatase 1 catalytic subunit (PP1) with neurabin II and inactivate PP1 and block mitosis during G(2) and M phases of the cell cycle progression. Thus, DCX seems to be a tumor suppressor of glioma.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.