Abstract

We have used a new synthetic injectable composite constituted of hydroxyapatite/tricalcium phosphate (HA/TCP) particles in suspension in a self-hardening Si–hydroxypropylmethylcellulose (HPMC) hydrogel. The aim of this study was to evaluate in vivo the biocompatibility and the new bone formation efficacy of this scaffold loaded with undifferentiated bone marrow stromal cells (BMSCs). This biomaterial was mixed extemporaneously with BMSCs prepared from C57BL/6 mice, injected in subcutaneous and intramuscular sites and retrieved 4 and 8 weeks after implantation. Dissection of the implants revealed a hard consistency and the absence of a fibrous capsule reflecting a good integration into the host tissues. Histological analysis showed mineralized woven bone in the granule inter-space with numerous active osteoclasts attached to the particles as assessed by the presence of multinucleated cells positively stained for TRAP activity and for the a3 subunit of the V-ATPase. Small vessels were homogenously distributed in the whole implants. Similar results were obtained in SC and IM sites and no bone formation was observed in the control groups when cell-free and particle-free transplants were injected. These results indicate that this injectable biphasic calcium phosphate–hydrogel composite mixed with undifferentiated BMSCs is a new promising osteoinductive bone substitute. It also provides with an original in vivo model of osteoclast differentiation and function.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.