Abstract

Bone graft substitutes (BGS) can be fabricated by the combination of three key ingredients: (1) competent bone-forming cells, (2) a suitable framework or scaffold, and (3) the presence of biological stimulants. Although much research has been done to develop the ideal BGS, still the results are not very consistent. In view of this, the cellularity and vascularity of the recipient site are supposed to be important for the osteoinductive capacity of BGS. Therefore, we hypothesized that a muscle recipient site could favor bone formation in a cell-based BGS compared to a subcutaneous recipient site due to the higher vascularity of muscle tissue. To prove this hypothesis, 48 titanium fiber mesh implants were seeded with rat bone marrow stromal cells (RBM) and implanted subcutaneously and intramuscularly in the adductor thigh muscle of rats. The amount of bone formation after 1, 3 and 6 weeks was evaluated by histology and histomorphometry as well as by calcium content. Analysis revealed that the bone formation increased during implantation. However, bone formation did not exceed 12% of the implant surface, both for the intramuscular and subcutaneous recipient site. Also, no significant differences in bone amount between these two sites existed. Consequently, our hypothesis could not be confirmed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.