Abstract
Parasitism-generated negative effects on ant societies are multifaceted, implying individual and colony-level responses. Though laboratory based evidence shows that the sublethal fungus Rickia wasmannii is responsible for physiological and behavioral responses that may negatively affect individual workers’ resilience and life expectancy in Myrmica ant workers, colony-level stress response to this parasite is largely unknown. Here, we focus on understanding of a long-term, colony-level effect of Rickia infection on Myrmica scabrinodis ant populations by tracking trait size-based changes. We collected worker specimens from infected and uninfected colonies from the same population in order to: (1) compare body size in response to parasitism, (2) assess the extent to which possible changes in size are associated with the severity of infection, and (3) investigate shifts in body size in response to infection over time by testing correlation of workers’ ages and sizes. We found that workers from infected colonies were significantly smaller than their healthy congeners, but neither infection level nor the age of the workers showed significant correlation with the size in infected colonies. Decreasing body sizes in infected colonies can be ascribed to workers’ mediated effect toward developing larvae, which are unable to attain the average body size before they pupate.
Highlights
Parasitism-generated negative effects on ant societies are multifaceted, implying individual and colony-level responses
We found no significant effect of age (ß = − 0.003, SE = 0.005, t = − 0.65, P = 0.514) or thalli number (ß = 0.0004, SE = 0.006, t = 0.06, P = 0.950, Fig. 2) on body size among infected colonies
Our results show that: R. wasmannii infected M. scabrinodis workers are significantly smaller in a natural environment than uninfected ones (1), and this decline in body size in the infected population is consistent across all observed characters, but not affected by thalli number (2)
Summary
Parasitism-generated negative effects on ant societies are multifaceted, implying individual and colony-level responses. Though laboratory based evidence shows that the sublethal fungus Rickia wasmannii is responsible for physiological and behavioral responses that may negatively affect individual workers’ resilience and life expectancy in Myrmica ant workers, colony-level stress response to this parasite is largely unknown. R. wasmannii is known to elicit different detrimental responses in individual workers, colonies seem to resist and compensate for the negative effects of the infection; they contain queens, rear larvae and pupae, and all age-classes of workers are present (see Csata et al.[17]) This may be due to the fact that it is often challenging to study colony-level effects of an infection under in situ conditions, when complex environmental parameters and multifactorial relationships with a number of other organisms[8,15,19] must be taken into consideration. We compared the sizes of randomly sampled workers from infected and uninfected colonies
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.