Abstract

BackgroundEctoparasitic infections are of particular interest for endangered wildlife, as ectoparasites are potential vectors for inter- and intraspecific pathogen transmission and may be indicators to assess the health status of endangered populations. Here, ectoparasite dynamics in sympatric populations of two Malagasy mouse lemur species, Microcebus murinus and M. ravelobensis, were investigated over an 11-month period. Furthermore, the animals’ body mass was determined as an indicator of body condition, reflecting seasonal and environmental challenges. Living in sympatry, the two study species experience the same environmental conditions, but show distinct differences in socioecology: Microcebus murinus sleeps in tree holes, either solitarily (males) or sometimes in groups (females only), whereas M. ravelobensis sleeps in mixed-sex groups in more open vegetation.ResultsBoth mouse lemur species hosted ticks (Haemaphysalis sp.), lice (Lemurpediculus sp.) and mites (Trombiculidae gen. sp. and Laelaptidae gen. sp.). Host species, as well as temporal variations (month and year), were identified as the main factors influencing infestation. Tick infestation peaked in the late dry season and was significantly more often observed in M. murinus (P = 0.011), while lice infestation was more likely in M. ravelobensis (P < 0.001) and showed a continuous increase over the course of the dry season. Genetic analyses identified Lemurpediculus sp. infesting both mouse lemur species. Ticks morphologically conform to H. lemuris, but genetic analysis showed a clear differentiation of the specimens collected in this study, suggesting a potentially new tick species. Host body mass decreased from the early to the late dry season, indicating nutritional stress during this period, which may render individuals more susceptible to parasitic infections.ConclusionsSeasonal differences and species-specific variations in sleeping site ecology in terms of sleeping site type and sociality were determined as key factors influencing ectoparasitism in M. murinus and M. ravelobensis. This needs to be taken into account when evaluating ectoparasite infestations at a given time point. The detection of the same parasite species on two closely related and sympatric host species furthermore indicates a potential pathway for disease transmission, not only within but also between lemur species.

Highlights

  • Ectoparasitic infections are of particular interest for endangered wildlife, as ectoparasites are potential vectors for inter- and intraspecific pathogen transmission and may be indicators to assess the health status of endangered populations

  • A total of 78 M. murinus (36 females, 42 males) and 100 M. ravelobensis (55 females, 45 males) were trapped and sampled for ectoparasites with high recapture rates leading to an overall sample size of 1306 separate capture events

  • Twenty-three tick larvae were recovered from 16 mouse lemurs (10 M. murinus, 6 M. ravelobensis) captured in the early months of the dry season (May, June and July 2015 and May 2016)

Read more

Summary

Introduction

Ectoparasitic infections are of particular interest for endangered wildlife, as ectoparasites are potential vectors for inter- and intraspecific pathogen transmission and may be indicators to assess the health status of endangered populations. Ectoparasite dynamics in sympatric populations of two Malagasy mouse lemur species, Microcebus murinus and M. ravelobensis, were investigated over an 11-month period. The two study species experience the same environmental conditions, but show distinct differences in socioecology: Microcebus murinus sleeps in tree holes, either solitarily (males) or sometimes in groups (females only), whereas M. ravelobensis sleeps in mixed-sex groups in more open vegetation. Ectoparasites may affect individual body condition and fitness and thereby affect population health, and need to be considered as potential vectors for inter- and intraspecific pathogen transmission. It is essential to enhance our knowledge on these complex interrelations, before any conclusions regarding the effect of anthropogenic habitat disturbance can be drawn

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call