Abstract

The introduction of Pseudogymnoascus destructans (Pd) to North America, agent of white-nose syndrome in hibernating bats, has increased interest in fungi from underground habitats. While bats are assumed to be the main vector transmitting Pd cave-to-cave, the role of other fauna is unexplored. We documented the fungi associated with over-wintering arthropods in Pd-positive hibernacula, including sites where bats had been recently extirpated or near-extirpated, to determine if arthropods carried Pd, and to compare fungal assemblages on arthropods to bats. We isolated 87 fungal taxa in 64 genera from arthropods. Viable Pd was cultured from 15.3% of arthropods, most frequently from harvestmen (Nelima elegans). Fungal assemblages on arthropods were similar to those on bats. The different fungal assemblages documented among arthropods may be due to divergent patterns of movement, aggregation, feeding, or other factors. While it is unlikely that arthropods play a major role in the transmission dynamics of Pd, we demonstrate that arthropods may carry viable Pd spores and therefore have the potential to transport Pd, either naturally or anthropogenically, within or among hibernacula. This underlines the need for those entering hibernacula to observe decontamination procedures and for such procedures to evolve as our understanding of potential mechanisms of Pd dispersal improve.

Highlights

  • The introduction of Pseudogymnoascus destructans (Pd) to North America, the cause of the fatal disease white-nose syndrome (WNS) in hibernating bats [1], has prompted increased interest in fungi from underground habitats such as caves and mines

  • The mean number of fungal taxa/individual arthropod was not significantly different across years (F2,71 = 2.24, p = 0.115), but was significantly higher on Nelima elegans and Scoliopteryx libatrix when compared to Meta ovalis and Exechiopsis/Anatella sp. (F3,71 = 17.98, p < 0.001, Table 1)

  • While the data presented here suggests it is unlikely that arthropods play a major role in the transmission dynamics of Pd, we demonstrate that arthropods may carry Pd spores and have the potential to transport Pd within or among hibernacula should they disperse naturally or be moved anthropogenically from

Read more

Summary

Introduction

The introduction of Pseudogymnoascus destructans (Pd) to North America, the cause of the fatal disease white-nose syndrome (WNS) in hibernating bats [1], has prompted increased interest in fungi from underground habitats such as caves and mines. Pd cave-to-cave within North America [3], but the possible role of other fauna as vectors is largely unexplored. Since S. myoti are known to switch hosts, Lucan, et al [4] suggest that bat ectoparasites may play a role in the transmission dynamics of Pd. Raudabaugh and Miller [5] found that Pd grew on autoclaved Migratory Locust (Locusta migratoria) in the lab, but it is unclear if Pd can compete with the native microflora present on arthropods under field conditions.

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.