Abstract

In deglaciated surfaces, lithology influences habitat development. In particular, serpentinite inhibits soil evolution and plant colonization because of insufficient phosphorus (P) content, among other stressful properties. In nutrient-poor environments, ectomycorrhizal fungi (EMF) play a key role exploring the soil for P beyond the rhizosphere. In this study, we followed the role of EMF in accessing inorganic and organic P along two proglacial soil chronosequences in the Alps (NW Italy), respectively characterized by pure serpentinite till and serpentinite mixed with 10% of gneiss, and colonized by European Larch. The access to inorganic and organic P forms by EMF was studied using specific mesh-bags for fungal hyphae entry, filled with quartz sand and inorganic phosphate (Pi) or myo-inositolhexaphosphate (InsP6) adsorbed onto goethite. They were incubated over 13 months at the organic/mineral horizon interface. After harvesting, EMF colonization via ergosterol analysis and the amount of P and Fe removed from mesh bags were measured. Ergosterol increased along the two chronosequences with slightly greater values on serpentinite and in Pi-containing bags. Up to 65% of Pi was removed from mesh-bags, only partly accompanied by a parallel release of Fe. The amount of InsP6 released was instead less than 45% and mostly removed with goethite. The results suggest that, in extremely P-poor environments, EMF are able to release both inorganic and organic P forms from highly stabilized associations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call