Abstract
Deep Spiking Neural Networks (SNNs), as an advanced form of SNNs characterized by their multi-layered structure, have recently achieved significant breakthroughs in performance across various domains. The biological plausibility and energy efficiency of SNNs naturally align with the requisites of edge computing (EC) scenarios, thereby prompting increased interest among researchers to explore the migration of these deep SNN models onto edge devices such as sensors and smartphones. However, the progress of migration work has been notably challenging due to the influence of the substantial increase in model parameters and the demanding computational requirements in practical applications. In this work, we propose a deep SNN splitting framework named EC-SNN to run the intricate SNN models on edge devices. We first partition the full SNN models into smaller sub-models to allocate their model parameters on multiple edge devices. Then, we provide a channel-wise pruning method to reduce the size of each sub-model, thereby further reducing the computational load. We design extensive experiments on six datasets (i.e., four non-neuromorphic and two neuromorphic datasets) to substantiate that our approach can significantly diminish the inference execution latency on edge devices and reduce the overall energy consumption per deployed device with an average reduction of 60.7% and 27.7% respectively while keeping the effectiveness of the accuracy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.