Abstract

ABSTRACTDeep-sea mineral prospecting has raised concerns regarding potential ecotoxicological impacts of deep-sea mineral extraction. Although metal mineral phases are predicted to exhibit low bioavailability, few data explore the relative toxicity of mineral phases and dissolved constituent metals. Acute 96 h chalcopyrite (CuFeS2) (<250 µm grain size) exposures using the shallow-water ecophysiological model organism Palaemon varians as an ecotoxicological proxy for deep-sea hydrothermal vent shrimp revealed no effect in both lethal and sublethal assays up to 2.888 g L−1, suggesting that chalcopyrite is not bioavailable. Deep-sea species, therefore, appear at greater ecotoxicological risk from dissolved metals during seafloor massive sulphide (SMS) mining. Consequently, an approach combining modelling the release, and spatial and temporal dilution of dissolved metals during SMS mining, with data on sublethal effects of dissolved metals on shallow-water proxies, may best constrain the potential ecotoxicological impacts of SMS mining, and deliver ecotoxicological threshold concentrations for active SMS extraction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.