Abstract

ABSTRACTThe continued widespread use of larvicides in Aedes aegypti control programs is still a necessary strategy, since there are no apparent efficient vaccines against arboviruses. However, chemical approaches may affect nontarget organisms and produce detrimental effects to environmental health. Therefore, the aim of this study was to conduct toxicity testing for pyriproxyfen at different concentrations using Daphnia magna and Artemia salina as model organisms to evaluate the ecotoxicological parameters. This study describes the toxicological effects of pyriproxyfen on both microcrustaceans, which are widely used in bioassays because of their sensitivity to changes in hydrosphere. Data demonstrated that the calculated EC50-48h value of pyriproxyfen was 2.5 μg/for D. magna and A. salina; the no-observed-effect concentration (NOEC) and the lowest-observed-effect concentration (LOEC) of pyriproxyfen were found to be 0.63 and 1.25 μg/L for Artemia salina and Daphnia magna, respectively. In chronic toxicity and reproduction tests on D. magna, a calculated CL50-7day (lethality on 50% of daphnids after 7 days of chronic test) and an EC50-21day (50% reduction in the reproductive output of parental daphnids after 21 days of exposure) higher than 1.25 μg/L pyriproxyfen were observed. The time of first reproduction was significantly increased in D. magna after exposure to environmentally relevant concentrations of pyriproxyfen, but other reproduction parameters were not markedly altered. Environmental risk assessment revealed that pyriproxyfen is highly toxic for both branchiopods. Data demonstrated that pyriproxyfen may produce adverse effects on the aquatic ecosystem at concentrations required to control Ae. aegypti.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.