Abstract

In this study, the ecotoxicological effects and bioaccumulation of triclosan (TCS) in Eichhornia crassipes (E. crassipes) were investigated with 28 d exposure experiments. The results showed that chlorophyll content was increased after 7 d exposure to 0.05–0.1 mg L−1 TCS, while it was inhibited significantly by 0.5 mg L−1 TCS after 21 d exposure. The concentrations of soluble protein in the leaves increased during the initial stage (7 d and 14 d), whereas they decreased during 21 d and 28 d. The concentrations of soluble protein in the roots gradually reduced during the exposure time. The antioxidant enzyme activities in roots decreased continually with the exposure time. However, the antioxidant enzyme (SOD and CAT) activities in leaves decreased after exposure longer than 14 d. Moreover, differentially expressed genes (DEGs) were observed in the root of E. crassipes after a 28 d exposure to 0.5 mg L−1 TCS, with 11023 DEGs down-regulated and 3947 DEGs up-regulated. 5 SOD down-regulated genes and 3 CAT down-regulated genes were identified from transport and catabolism in cellular processes. After 28 d exposure, the TCS content in roots and leaves stressed by 0.5 mg L−1 TCS were up to 13.04 μg g−1 and 1.97 μg g−1, respectively. SOD in leaves was negatively correlated with TCS content in leaves, CAT in roots was negatively correlated with TCS content in roots. These results provide experimental data to assess the ecological risk of TCS with long exposure in aquatic systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.