Abstract

AbstractCurrent measures of microbe‐mediated biogeochemical processes in sediments were examined for their potential use as indicators of heavy metal ecotoxicity in both river sediments and bacterial cultures. Assays were carried out with HgCl2, CuSO4, and 3CdSO4 · 8H2O added to sediment samples and bacterial cell suspensions at concentrations ranging from 0.1 to 10 mM and 0.1 μM to 1 mM, respectively.Chemoautotrophic CO2 fixation by Elbe River sediment microbiota was most sensitive to Hg2+ and Cd2+, but not to Cu2+.Among the estimates of heterotrophic productivity, incorporation of leucine into cellular protein showed clearer dose responses than incorporation of thymidine into bacterial DNA. Thymidine incorporation was highly resistant to and even stimulated by metal ions, particularly in starved and anaerobic cultures of a test strain of Vibrio anguillarum. Similar metal ion induced “overshoot” responses beyond the levels of untreated controls were noted for mineralization of 14C‐glucose by V. anguillarum and, in the case of Cd2+, also in sediment.As a less complex measure of microbial respiratory activity, succinate dehydrogenase (SDH) showed normal dose responses without stimulatory effects, as long as bacterial cell homogenates were assayed. Despite this result, it is concluded that levels of SDH in natural sediment microbiota are inevitably affected by metal‐induced processes of selection and enzyme synthesis, and would thus fail to provide an appropriate measure of metal ecotoxicity. The final conclusion is that current parameters of microbial production and activity often reveal dose responses that do not fulfill basic requirements of ecotoxicity testing in metal‐polluted sediments. © 1993 John Wiley & Sons, Inc.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.