Abstract

Classification models were established on four endpoints, i.e. trout, daphnia, quail and bee, including from 100 to 300 pesticides subdivided into 3 toxicity classes. For each species, five separate sets of molecular descriptors, computed by several software, were compared, including parameters related to 2D or 3D structures. The most relevant descriptors were selected with help of a procedure based on genetic algorithms. Then, structure-activity relationships were built by Adaptive Fuzzy Partition (AFP), a recursive partitioning method derived from Fuzzy Logic concepts. Globally, satisfactory results were obtained for each animal species. The best cross-validation and test set scores reached values of about 70–75%. More important, the relationships derived from the descriptors calculated from 2D structures were superior or similar to those computed from 3D structures. These results underline that the long computational time employed to compute 3D descriptors is often useless to improve the prediction ability of the ecotoxicity models. Finally, the differences in the prediction ability between the different software used were quite reduced and show the possibility to use different descriptor packages for obtaining similar satisfactory models. †Presented at CMTPI 2005: Computational Methods in Toxicology and Pharmacology Integrating Internet resources (Shanghai, China, October 29–November 1 2005).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.