Abstract

Coastal ecosystems are easily overexploited and changed by physical and biological factors. In this paper, we discuss current ideas and arguments for coastal ecosystem management with an emphasis on systems that have large bivalve filter feeder components. For centuries the species or population approach has been utilized in fisheries management. With the growing knowledge base on specific environmental effects and relationships, it has become increasingly evident that a broad or holistic approach to fisheries management in these systems is usually more appropriate. An ongoing ecosystem scale experiment in which oysters are completely removed from tidal creeks is described and used as a case study. The experimental design takes estimates of the systems carrying capacity into account. Using the population or species approach to monitor the oysters, the only observable change after the experimental manipulation was a slight increase in summer somatic growth and elevated recruitment of oysters in creeks with oyster reefs removed. These data are interpreted as an indication that the creeks with oysters present are below or near carrying capacity. However, when nekton, plankton and water chemistry data are also examined a much more complicated picture emerges. During the summer growing season, nekton biomass in all creeks is often greater than oyster biomass. Also, our calculations show that oysters do not produce enough ammonium to satisfy phytoplankton productivity, but nekton, water column remineralization and sediments can account for most of the deficit. Finally, microflagellates, which are a preferred food for the oysters, dominate the phytoplankton during the summer growing season and diatoms dominate the colder months. The timing of the change in phase of phytoplankton dominance seems to mirror the seasonal arrival and departure times of nekton in the creeks. We argue that dense bivalve reefs and beds are indicative of intense positive feedback loops that make their ecosystems susceptible to dramatic changes in structure. Such changes have not been reported for natural systems, but are found in systems influenced by over-fishing, nutrient loading and pollution. Thus, the management of sustainable fisheries in coastal ecosystems requires an understanding of the ecosystem science and the realization that systems dominated by bivalves exhibit complex responses that are not easily explained by linear dynamics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call