Abstract

Changes in timing or amount of precipitation may be of great consequence for carbon cycling in the Mixedgrass Prairie of N. America, because CO2 fixation and efflux are tightly coupled to soil water properties. The objective of our project was to quantify how ecosystem respiration (Re) responds to experimental changes in winter and summer precipitation in a Mixedgrass Prairie using in situ field manipulations of snow depth and summer rain. Our study was conducted at the USDA-ARS High Plains Grasslands Research Station, west of Cheyenne, Wyoming. We installed three replicated 50 m snow fences to increase winter snow on the leeward side of the snow fence and experimentally manipulated summer precipitation by either increasing (+50%) or decreasing (−50%) precipitation amounts. We also measured ambient conditions. Re rates in May were around 2 g C m−2 d−1 for all treatments and increased to their greatest values in June, up to 10 g C m−2 d−1, with the ambient treatment having the largest flux rates. There were no treatment effects during the early summer, but by midsummer, Re rates were least in the reduced rainfall plots and greatest in the snow plots. Soil moisture and gross photosynthesis had strong influence on the daily Re rates, but soil temperature had little correlation with daily Re rates. In summary, the Re rates in this Mixedgrass Prairie are strongly influenced by changes in precipitation, especially winter snow accumulation. Thus, carbon cycle estimates under future climate change scenarios need to include not only the affects of changes in summer rain, but also, the consequences of deep snow in winter and itsȁ9 affect on carbon cycling processes in winter and subsequent summers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.