Abstract
Regenerative agriculture is a newly codified approach to agriculture that emphasizes reducing reliance on exogeneous inputs, as well as restoring and enhancing ecosystem services such as soil carbon (C) sequestration. These regenerative agriculture principles suggest that modern livestock systems can be redesigned to better capitalize on animals' ecological niche as biological up cyclers and may be necessary to fully regenerate some landscapes. One example is a multispecies pasture rotation (MSPR) system, which symbiotically stacks multiple animal production enterprises (i.e., chickens, cattle, sheep, and pigs) on one landscape. We conducted a whole-farm life cycle assessment (LCA) of an MSPR in the southeastern United States that was originally converted from degraded cropland. We compared the production outputs, greenhouse gas (GHG) emissions, land footprints, and soil health outcomes to a conventional, commodity (COM) production system of each respective species. Our 20-year MSPR chronosequence of soil C and other soil health indicators shows dramatic improvement since establishment, sequestering an average of 2.29 Mg C ha−1 yr−1. Incorporation of soil C sequestration into the LCA reduced net GHG emissions of the MSPR by 80%, resulting in a footprint 66% lower than COM. However, when comparing required land between the two systems for food production, MSPR required 2.5 times more land when compared to COM. Thus, while our model indicates that MSPR can simultaneously produce protein while regenerating land, a considerably greater land area is needed when compared to COM. Our results present an important yet paradoxical conclusion on land and food production balance. Should society prioritize an input-intensive, COM system that produces more food from a smaller yet degrading land base? Or, alternatively, should systems such as MSPR that produce less food on a larger, but more ecologically functional landscape be more highly prioritized? These complexities must be considered in the global debate of agricultural practice and land. Our results indicate MSPRs are a useful model for alternative livestock production systems with improved environmental outcomes, but in this study may present considerable land-use tradeoffs.
Highlights
Livestock are often considered agriculture’s key greenhouse gas (GHG) emitter, contributing more than one-third of agricultural emissions (EPA, 2019)
Animal production life cycle assessment (LCA) are generated for one species of livestock and likewise are analyzed with broad-based formulas generated from empirical models across large geographical contexts
Our study provides unique model parameters for an actual farm in the United States, populated with on-farm generated vs. literature derived production metrics with actual soil C and subsequent soil health data across time and space
Summary
Livestock are often considered agriculture’s key greenhouse gas (GHG) emitter, contributing more than one-third of agricultural emissions (EPA, 2019). Livestock production in the United States is highly specialized and intensified and is often cited as having both lower GHG [on a per carcass weight (CW) basis] and land-use footprints than pasture-based livestock systems. Pasture-based systems often have less GHG intensity from a land use basis (Cardoso et al, 2016). Current studies neither robustly consider complexity in diversified pasture-based livestock systems, nor consider the role of soil carbon (C) in GHG flux as well as land-use tradeoffs. This study aimed to contribute to this gap, in part, by quantifying GHG emissions, soil C sequestration, soil health, and land footprint of a farm using a diversified, multispecies pasture rotation (MSPR) in Clay County, Georgia, USA. We compared emissions and land use to conventional, commodity (COM) production systems for beef, pork, and poultry
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.