Abstract
Balancing the biomass requirements of different functions for the purpose of population reproduction and persistence can be challenging for alpine plants due to extreme environmental stresses from both above- and below-ground sources. The presence of ecosystem engineers in alpine ecosystems effectively alleviates microenvironmental stresses, hence promoting the survival and growth of other less stress-tolerant species. However, the influence of ecosystem engineers on plant resource allocation strategies remains highly unexplored. In this study, we compared resource allocation strategies, including biomass accumulation, reproductive effort (RE), root fraction (RF), as well as relationships between different functions, among four alpine plant species belonging to Gentianaceae across bare ground, tussock grass-, cushion-, and shrub-engineered microhabitats. Shrub-engineered microhabitats exerted the strongest effects on regulating plant resource allocation patterns, followed by tussock grass- and cushion-engineered microhabitats. Additionally, apart from microhabitats, population background and plant life history also significantly influenced resource allocation strategies. Generally, plants established within engineered microhabitats exhibited higher biomass accumulation, as well as increased flower, leaf and stem production. Furthermore, individuals within engineered microhabitats commonly displayed lower RF, indicating a greater allocation of resources to above-ground functions while reducing allocation to root development. RE of annual plants was significantly higher than that of perennial plants. However, individuals of annual plants within engineered microhabitats showed lower RE compared to their counterparts in bare ground habitats; whereas perennial species demonstrated similar RE between microhabitat types. Moreover, RE was generally independent of plant size in bare-ground habitats but exhibited size-dependency in certain populations for some species within specific engineered microhabitat types. However, size-dependency did exist for absolute reproductive and root biomass allocation in most of the cases examined here. No trade-offs were observed between flower mass and flower number, nor between leaf mass and leaf number. The capacity of ecosystem engineers to regulate resource allocation strategies in associated plants was confirmed. However, the resource allocation patterns resulted synergistically from the ecosystem engineering effects, population environmental backgrounds, and plant life history strategies. In general, such regulations can improve individual survival and reproductive potential, potentially promoting population persistence in challenging alpine environments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.