Abstract

The primary succession on the 50 year old volcanic island of Surtsey, Iceland, has been intensively studied. Initial soil development and other belowground processes are important drivers of primary succession but frequently overseen. A Leymus arenarius and Honckenya peploides dominated plant community has formed a relatively stable successional sere on the island, where external inputs of nutrients remain low. These plants have had a stable <10% aboveground surface cover during the past 20 years, but less is known about their belowground development. We investigated the organic matter (carbon) output and input processes (soil respiration, ecosystem respiration and photosynthesis) of the community and how they were affected by soil temperature, soil water content, vegetation and age of L. arenarius dunes. We found that both soil respiration and root stocks have increased substantially from 1987, when an earlier study was conducted. The same pattern was found when different aged L. arenarius dunes were studied. L. arenarius had a stronger effect on the soil respiration fluxes than its surface cover might indicate, through its much higher photosynthesis rates than H. peploides. The study furthermore illustrated how water stress may temporally limit belowground processes in this coastal community.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call