Abstract

Alpine grassland is threatened by the import of chemicals, fertilizers and other external resources with increasing human activities on the Qinghai-Tibet Plateau. It is unclear how carbon cycle of alpine grasslands is affected by the inputs of external resources such as nitrogen, phosphorus, and potassium (N, P, K) and their interactions. We conducted a 3 year experiment on the interactive addition of N, P and K with alpine grassland as the research object to clarify ecosystem carbon exchange process in response to resource addition by measuring community coverage and ecosystem carbon exchange. The results showed the alpine meadow was represented by carbon sequestration during the growing season. The mean value of net ecosystem CO2 exchange (NEE) was -13.0 μmol·m-2·s-1 under the control treatment. NEE, ecosystem respiration (ER), and gross ecosystem productivity (GEP) showed no significant responses when N, P and K were added separately. NEE was significantly increased by 95.3% and 63.9%, GEP was significantly increased by 45.5% and 33.0% under the combined addition of NP and NPK, but ER remained stable. The combined addition of NP or NPK mainly increased NEE and GEP by increasing the coverage of plant communities and affecting ecosystem water use efficiency. Plant community coverage was increased by 18.1% and 21.4%, respectively. The addition of NP increased productivity and autotrophic respiration in alpine meadow. It might cause soil acidification to inhibit heterotrophic respiration, thereby did not change ER due to the two aspects canceling each other out. The addition of N, P, K alone and NK and PK did not change ecosystem carbon exchange, while the combined addition of NP increased NEE and GEP on the nutrient-deficient alpine meadows, indicating that ecosystem carbon uptake was co-limited by N and P in alpine meadow.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call