Abstract
BackgroundIn the summer of 2015, hundreds of wildfires burned across the state of Alaska, and consumed more than 1.6 million ha of boreal forest and wetlands in the Yukon–Koyukuk region. Mapping of 113 large wildfires using Landsat satellite images from before and after 2015 indicated that nearly 60% of this area was burned at moderate-to-high severity levels. Field measurements near the town of Tanana on the Yukon River were carried out in July of 2017 in both unburned and 2015 burned forested areas (nearly adjacent to one-another) to visually verify locations of different Landsat burn severity classes (low, moderate, or high; LBS, MBS, HBS).ResultsField measurements indicated that the loss of surface organic layers in boreal ecosystem fires is a major factor determining post-fire soil temperature changes, depth of thawing, and carbon losses from the mineral topsoil layer. Measurements in forest sites showed that soil temperature profiles to 30 cm depth at burned forest sites were higher by an average of 8–10 °C compared to unburned forest sites. Sampling and laboratory analysis indicated a 65% reduction in soil carbon content and a 58% reduction in soil nitrogen content in severely burned sample sites compared to soil mineral samples from nearby unburned spruce forests.ConclusionsCombined with nearly unprecedented forest areas severely burned in the Interior region of Alaska in 2015, total ecosystem fire-related losses of carbon to the atmosphere exceeded most previous estimates for the state, owing mainly to inclusion of potential “mass wasting” and decomposition in the mineral soil carbon layer in the 2 years following these forest fires.
Highlights
In the summer of 2015, hundreds of wildfires burned across the state of Alaska, and consumed more than 1.6 million ha of boreal forest and wetlands in the Yukon–Koyukuk region
Over the past 50 years, there has been an increase in the frequency and severity of boreal forest wildfires in Alaska [17]
Deeper burning of surface organic layers in black spruce (Picea mariana (Mill.) BSP) forests has occurred during late growing-season fires and on more well-drained sites [19]
Summary
In the summer of 2015, hundreds of wildfires burned across the state of Alaska, and consumed more than 1.6 million ha of boreal forest and wetlands in the Yukon–Koyukuk region. Mapping of 113 large wildfires using Landsat satellite images from before and after 2015 indicated that nearly 60% of this area was burned at moderateto-high severity levels. Field measurements near the town of Tanana on the Yukon River were carried out in July of 2017 in both unburned and 2015 burned forested areas (nearly adjacent to one-another) to visually verify locations of different Landsat burn severity classes (low, moderate, or high; LBS, MBS, HBS). The 2015 fire season in Alaska resulted in the second highest acreage burned for the state in a single year. Over the past 50 years, there has been an increase in the frequency and severity of boreal forest wildfires in Alaska [17]. Deeper burning of surface organic layers in black spruce (Picea mariana (Mill.) BSP) forests has occurred during late growing-season fires and on more well-drained sites [19]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.