Abstract

Tropical forests are major sources of global terrestrial evapotranspiration (ET), but these heterogeneous landscapes pose a challenge for continuous estimates of ET, so few studies are conducted, and observation gaps persist. New spaceborne products such as ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS) are promising tools for closing such observation gaps in understudied tropical areas. Using ECOSTRESS ET data across a large, protected tropical forest region (2250 km2) situated on the western slope of the Andes, we predicted ET for different days. ET was modeled using a random forest approach, following best practice workflows for spatial predictions. We used a set of topographic, meteorological, and forest structure variables from open-source products such as GEDI, PROBA-V, and ERA5, thereby avoiding any variables included in the ECOSTRESS L3 algorithm. The models indicated a high level of accuracy in the spatially explicit prediction of ET across different locations, with an r2 of 0.61 to 0.74. Across all models, no single predictor was dominant, and five variables explained 60% of the models’ results, thus highlighting the complex relationships among predictor variables and their influence on ET spatial predictions in tropical mountain forests. The leaf area index, a forest structure variable, was among the three variables with the highest individual contributions to the prediction of ET on all days studied, along with the topographic variables of elevation and aspect. We conclude that ET can be predicted well with a random forest approach, which could potentially contribute to closing the observation gaps in tropical regions, and that a combination of topography and forest structure variables plays a key role in predicting ET in a forest on the western slope of the Andes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call