Abstract

The fast growing popularity of smartphones and tablets enables us to use various intelligent mobile applications. As many of those applications require position information, smart mobile devices provide positioning methods such as Global Positioning System (GPS), WiFi-based positioning system (WPS), or Cell-ID-based positioning service. However, those positioning methods have different characteristics of energy-efficiency, accuracy, and service availability. In this paper, we present an Energy-Efficient Collaborative and Opportunistic Positioning System (ECOPS) for heterogeneous mobile devices. ECOPS facilitates a collaborative environment where many mobile devices can opportunistically receive position information over energy-efficient and prevalent WiFi, broadcasted from a few other devices in the communication range. The position-broadcasting devices in ECOPS have sufficient battery power and up-to-date location information obtained from accurate but energy-inefficient GPS. A position receiver in ECOPS estimates its location using a combination of methods including received signal strength indicators and 2D trilateration. Our field experiments show that ECOPS significantly reduces the total energy consumption of devices while achieving an acceptable level of location accuracy. ECOPS can be especially useful for unique resource scarce, infrastructureless, and mission critical scenarios such as battlefields, border patrol, mountaineering expeditions, and disaster area assistance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.