Abstract

To explore the ecophysiological characteristics of the kleptoplastidic dinoflagellate Shimiella gracilenta, we determined its spatiotemporal distribution in Korean coastal waters and growth and ingestion rates as a function of prey concentration. The abundance of S. gracilenta at 28 stations from 2015 to 2018 was measured using quantitative realtime polymerase chain reaction. Cells of S. gracilenta were detected at least once at all the stations and in each season, when temperature and salinity were 1.7–26.4°C and 9.9–35.6, respectively. Moreover, among the 28 potential prey species tested, S. gracilenta SGJH1904 fed on diverse prey taxa. However, the highest abundance of S. gracilenta was only 3 cells mL-1 during the study period. The threshold Teleaulax amphioxeia concentration for S. gracilenta growth was 5,618 cells mL-1, which was much higher than the highest abundance of T. amphioxeia (667 cells mL-1). Thus, T. amphioxeia was not likely to support the growth of S. gracilenta in the field during the study period. However, the maximum specific growth and ingestion rates of S. gracilenta on T. amphioxeia, the optimal prey species, were 1.36 d-1 and 0.04 ng C predator- 1 d-1, respectively. Thus, if the abundance of T. amphioxeia was much higher than 5,618 cells mL-1, the abundance of S. gracilenta could be much higher than the highest abundance observed in this study. Eurythermal and euryhaline characteristics of S. gracilenta and its ability to feed on diverse prey species and conduct kleptoplastidy are likely to be responsible for its common spatiotemporal distribution.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call