Abstract

Two main dormancy states, innate and imposed dormancy, were characterized in turions (winter buds) of the aquatic carnivorous plant Aldrovanda vesiculosa L. (Droseraceae) kept at 3 ± 1 °C in a refrigerator over the winter. As a result of the breaking of imposed dormancy by a temperature increase (at 15 - 20 °C), some of the turions rose to the water surface within 1 - 3 d and germinated. Turion leaves contained large lacunae with a slimy reticulum and were filled by water over winter. As a result of breaking imposed dormancy, the proportion of gas volume in inner turion leaves rose from 10 - 20 % to 100 % of leaf lacunae volume. The aerobic dark respiration rate of the turions [0.74 - 1.5 μmol O2) kg-1(FM) s-1] slightly increased during innate dormancy after 1 - 2 d at 20 °C, while it was almost constant during the breaking of imposed dormancy. The anaerobic fermentation rate of the turions was only 1.5 - 7 % of the oxygen respiration rate and also was constant during the breaking of imposed dormancy. In turions, the content of glucose, fructose, and sucrose was the same for the two states of dormancy, but starch content was greatly reduced for the imposed dormancy (10 - 11 vs. 32 % DM). It may be suggested that a temperature increase causes an increase of fermentation or respiration which is responsible for the evolution of gas in turion lacunae and, thus, for turion rising.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call