Abstract

Members of the cosmopolitan streptophycean genus Klebsormidium live in various habitats, including sand dunes and polar/alpine environments. To survive in these harsh conditions they must possess an array of adaptive physiological and structural mechanisms, for example, to deal with chilling and photochilling stresses. Since these mechanisms have not been studied in detail, the objectives of this study were (i) to determine the physiological and biochemical responses of Klebsormidium cf. flaccidum (K. cf. flaccidum) to chilling (low temperature [LT]) and photochilling (LT in combination with high light [HL]) stresses; and (ii) to understand the cross-link between biochemical parameters and cellular ultrastructural changes. The results indicated that 5°C is a temperature threshold (i.e., at 5°C) but not at higher temperatures, physiological changes were observed (Fv /Fm and ETR decreased and energy-partitioning distribution changed, with an increase in Y[NPQ] under LT and an increase in Y[NO] under HL-LT). Also, pigment contents changed significantly, with increased concentrations of photoprotective pigments such as antheraxanthin, zeaxanthin, and total carotenes. All of these responses occurred under LT and, to a greater extent, under LT-HL, indicating that the two stresses (temperature and light) are additive. The cold treatment applied here induced the formation of spores under both LL and HL. The degree of photoinhibition was higher in spores than in vegetative cells, indicating that spores are less susceptible to photodamage. This study demonstrated a broad acclimation potential in different developmental stages of K. cf. flaccidum, which helps to explain the ecological success of this genus.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.