Abstract
Chilean Patagonia is a hotspot of biodiversity, harbouring cold-water corals (CWCs) that populate steep walls and overhangs of fjords and channels. Through anthropogenic activities such as deforestation, roadworks, aquafarming and increased landslide frequency, sediment input increases in the fjord region. While the absence of CWCs on moderately steep slopes has been suggested to reflect high vulnerability to sedimentation, experimental evidence has been lacking. Here, we investigated the sensitivity of CWCs to sediment stress, using juvenile Caryophyllia (Caryophyllia) huinayensis as a model. A 12-week aquarium experiment was conducted with three sediment loads: the average natural sediment concentration in Comau Fjord, 100- and 1000-fold higher sediment levels, expected from gravel road use and coastal erosion. Changes in coral mass and calyx dimensions, polyp expansion, tissue retraction and respiration were measured. For CWCs exposed to two and three order of magnitude higher sediment concentrations, 32% and 80% of the animals experienced a decrease in tissue cover, respectively, along with a decrease in respiration rate of 34% and 66%. Under the highest concentration corals showed reduced polyp expansion and a significantly reduced growth of ~ 95% compared to corals at natural concentration. The results show that C.huinayensis is affected by high sediment loads. As human activities that increase sedimentation steadily intensify, coastal planners need to consider detrimental effects on CWCs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.