Abstract
Biological soil crusts, formed by an association of soil particles with cyanobacteria, lichens, mosses, fungi and bacteria in varying proportions, live in or directly on top of the uppermost soil layer. To evaluate their role in the global carbon cycle, gas exchange measurements were conducted under controlled conditions. Moss-dominated soil crusts were first analyzed as moss tufts on soil, then the mosses were removed and the soil was analyzed separately to obtain the physiological response of both soil and individual moss stems. Net photosynthetic response of moss stems and complete crusts was decreased by insufficient and excess amounts of water, resulting in optimum curves with similar ranges of optimum water content. Light saturation of both sample types occurred at high irradiance, but moss stems reached light compensation and saturation points at lower values. Optimum temperatures of moss stems ranged between 22 and 27°C, whereas complete crusts reached similar net photosynthesis between 7 and 27°C. Under optimum conditions, moss stems reached higher net photosynthesis (4.0 vs. 2.8μmolm(-2)s(-1)) and lower dark respiration rates (-0.9 vs. -2.4μmolm(-2)s(-1)). Respiration rates of soil without moss stems were high (up to -2.0μmolm(-2)s(-1)) causing by far lower absolute values of NP/DR ratios of soil crusts as compared to moss stems. In carbon balances, it therefore has to be clearly distinguished between measurements of soil crust components versus complete crusts. High rates of soil respiration may be caused by leaching of mosses, creating high-nutrient microsites that favor microorganism growth.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.