Abstract

Delicate modification of the silica contents and porous structures within RHO zeolites has been readily realized by adopting a variety of alkali metal-crown ether (AMCE) complexes as the templates. Compared to the previous protocols, up to 70% of the Cs+ cations could be substituted by much cheaper K+ cations and thus the synthesis costs of RHO zeolites could be impressively reduced. The subsequent 133Cs and 23Na MAS NMR spectra further reveal that the Cs+ cations may aggregate with crown ether in a form of monomer or dimer complex, which then plays a significant role in the structural direction of RHO zeolites, whereas the hydrated Na+ cations mainly serve as the charge balancing cations. Meanwhile, the addition of different amount of K+ cation could result in varying degrees of template-framework interaction and consequently generates RHO zeolites with diverse compositions. Finally, the proton-type RHO zeolites were applied to the adsorptive separation of CO2/CH4/N2 mixture. Therein, the medium-silica ones achieve fine trade-off for the adsorption capacity, selectivity and heat even under ultralow CO2 concentration, which makes them potential candidates for trace CO2 capture.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call