Abstract
This project evaluated a low-cost sponge phantom setup for its capability to teach and study A- and B-line reverberation artifacts known from lung ultrasound and to numerically simulate sound wave interaction with the phantom using a finite-difference time-domain (FDTD) model. Both A- and B-line artifacts were reproducible on B-mode ultrasound imaging as well as in the FDTD-based simulation. The phantom was found to be an easy-to-set up and economical tool for understanding, teaching, and researching A- and B-line artifacts occurring in lung ultrasound. The FDTD method-based simulation was able to reproduce the artifacts and provides intuitive insight into the underlying physics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.