Abstract

We present an efficient quasi-Newton orbital solver optimized to reduce the number of gradient evaluations and other computational steps of comparable cost. The solver optimizes orthogonal orbitals by sequences of unitary rotations generated by the (preconditioned) limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) algorithm equipped with trust-region step restriction. The low-rank structure of the L-BFGS inverse Hessian is exploited when solving the trust-region problem. The efficiency of the proposed "Quasi-Newton Unitary Optimization with Trust-Region" (QUOTR) solver is compared to that of the standard Roothaan-Hall approach accelerated by the Direct Inversion of Iterative Subspace (DIIS), and other exact and approximate Newton solvers for mean-field (Hartree-Fock and Kohn-Sham) problems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.