Abstract

In a world grappling with escalating energy needs, environmental concerns, and economic constraints, the transition to renewable energy becomes critical. This study delves into geothermal energy, a promising renewable source, to develop four distinctive tri-generation systems (producing power, heat, and freshwater) optimized for economic efficiency and investment returns. The primary focus is on assessing these systems through an innovative lens of economic viability, including net present value (NPV) and payback periods, alongside their thermodynamic performance. Notably, System B emerges as the most economically advantageous, boasting the shortest payback period of 3.65 years and the highest NPV of $2.38 million, while System C trails with the lowest NPV of $0.32 million. Additionally, System D, identified as optimally complementary, undergoes comprehensive optimization using advanced algorithms and machine learning, achieving notable efficiencies and cost-effectiveness in power output, exergy, and freshwater production. This study not only underscores the potential of geothermal tri-generation systems in meeting energy, heat, and water needs but also highlights their significant economic benefits and investment attractiveness, offering a compelling case for their adoption in sustainable energy strategies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call