Abstract
Community microgrids are developed within existing distribution systems. When there is an extreme event happening, distribution systems can be seamlessly partitioned into several community microgrids for uninterrupted supply to the endusers. In order to guarantee the system reliability, distributed energy resources (DERs) should be sized for ensuring generation adequacy to cover unexpected events. This paper presents a comprehensive methodology for DERs selection in community microgrids, and an economic approach to meet the system reliability requirements. Algorithms of discrete time Fourier transform (DTFT) and particle swarm optimization (PSO) are employed to find the optimal solution. Uncertainties of load demand and renewable generation are taken into consideration. As part of the case study, a sensitivity analysis is carried out to show the renewable generation impact on DERs' capacity planning.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.