Abstract

The successful use of Reverse Osmosis (RO) process has increased significantly in water desalination, water treatment and food processing applications. In this work, the economic feasibility of a multi-stage RO process including both retentate and permeate reprocessing for the removal of chlorophenol from wastewater is explored using simulation and optimisation studies. Firstly, a mathematical model of the process is developed based on the solution diffusion model, which was validated using experimental chlorophenol removal from the literature, is combined with several appropriate cost functions to form a full model package. Secondly, for a better understanding of the interactions between the different parameters on the economic performance of the process, a detailed process simulation is carried out. Finally, a multi-objective optimisation framework based on Non-Linear Programming (NLP) problem is developed for minimising the product unit cost, the total annualised cost, the specific energy consumption together with optimising the feed pressure and feed flow rate for an acceptable level of chlorophenol rejection and total water recovery rate. The results clearly show that the removal of chlorophenol can reach 98.8% at a cost of approximately 0.21 $/m³.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.