Abstract

This paper deals with control of pumps in large-scale water distribution networks with the aim of minimizing economic costs while satisfying operational constraints. Finding a control algorithm in combination with a model that can be applied in real-time is a challenging problem due to the nonlinearities presented by the pipes and the network sizes. We propose a predictive control algorithm with a periodic horizon. The method provides a way for the economic operation of large water networks with a low-complexity linear model. Economic Predictive control with a periodic horizon and a terminal state constraint is constructed to keep the state trajectories close to an optimal periodic trajectory. Barrier terms are also included in the cost function to prevent constraint violations. The proposed method is tested on a state-of-the-art EPANET model of the water network of a medium size Danish town (Randers) and shown to perform as intended under varying conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.