Abstract

In this paper a relationship between the vehicle scheduling problem and the dynamic lot size problem is considered. For the latter problem we assume that order quantities for different products can be determined separately. Demand is known over our n-period production planning horizon. For a certain product our task is to decide for each period if it should be produced or not. If it is produced, what is its economic lot size? Our aim here is to minimize the combined set-up and inventory holding costs. The optimal solution of this problem is given by the well-known Wagner-Whitin dynamic lot size algorithm. Also many heuristics for solving this problem have been presented. In this article we point out the analogy of the dynamic lot size problem to a certain vehicle scheduling problem. For solving vehicle scheduling problems the heuristic algorithm developed by Clark and Wright in very often used. Applying this algorithm to the equivalent vehicle scheduling problem we obtain by analogy a simple heuristic algorithm for the dynamic lot size problem. Numerical results indicate that computation time is reduced by about 50% compared to the Wagner-Whitin algorithm. The average cost appears to be approximately 0.8% higher than optimum.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call