Abstract
Abstract Gasification is a promising conversion technology to deliver high energy efficiency simultaneously with low energy and cost penalties for carbon capture. This paper is devoted to in-depth economic evaluations of pre- and post-combustion Calcium Looping (CaL) configurations for Integrated Gasification Combined Cycle (IGCC) power plants. The poly-generation capability, e.g. hydrogen and power co-generation, is also discussed. The post-combustion CaL option is a gasification power plant in which the flue gases from the gas turbine are treated for CO2 capture in a carbonation–calcination cycle. In pre-combustion CaL option, the Sorbent Enhanced Water Gas Shift (SEWGS) feature is used to produce hydrogen which is used for power generation. As benchmark case, a conventional gasification power plant without carbon capture was considered. Net power output of evaluated cases is in the range of 550–600 MW with more than 95% carbon capture rate. The pre-combustion capture configuration was evaluated also in hydrogen and power co-generation scenario. The evaluations are concentrated for estimation of capital costs, specific investment cost, operational & maintenance (O&M) costs, CO2 removal and avoidance costs, electricity costs, sensitivity analysis of technical and economic assumptions on key economic indicators etc.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.