Abstract
An increase in stall stocking density (SSD), as measured by the number of lactating cows per stall in a freestall barn, reduces cow performance, such as milk yield and fertility, but may increase farm profitability. Our objectives were to calculate effects of varying SSD on profit per stall for a range of effects on cow performances and external farm factors and store results in regression metamodels. The literature on quantified effects of SSD on cow performance that directly affects cash flow was found to be weak. We assumed effects of SSD on milk yield, probability of conception, and probability of culling. External farm factors were probability of insemination, feed price, and milk price. A herd budget-simulation model was used which mimics the performance of cows in a herd and calculates profit per stall per year and other results. The SSD varied from 100 (no overstocking) to 150% (severe overstocking) in steps of 10%. Sensitivity analyses for effects of SSD on cow performance and effects of external farm factors were performed. Three regression metamodels were developed. The first metamodel accurately predicted profitability at 100% SSD for all variations in the external farm factors. Optimal SSD varied from 100 to 150% SSD, depending on the combination of inputs, and was very sensitive to changes in the size of the milk loss and milk and feed prices. Average optimal SSD of all 2,187 combinations of inputs was 120% SSD and average maximum increase in profit was $99/stall per year. Of the 2,187 combinations of inputs, 18% were ascending (maximum increase in profit >150% SSD), 33% were descending (maximum profit at 100% SSD), and 50% had a maximum increase in profit between 100 and 150% SSD. The second metamodel accurately captured changes in profit for all combinations of biological and external inputs and SSD. A third metamodel captured breakeven daily milk losses which would result in the same profit as at 100% SSD given the same external farm factors. In conclusion, overstocking was profitable under plausible economic conditions in the United States. The 3 metamodels accurately captured the results for a wide range of values of the input variables. A tradeoff will occur between economically optimal SSD and animal welfare in some situations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.