Abstract

The study assessed the economic efficiency of different strategies for the control of post-weaning multi-systemic wasting syndrome (PMWS) and porcine circovirus type 2 subclinical infection (PCV2SI), which have a major economic impact on the pig farming industry worldwide.The control strategies investigated consisted on the combination of up to 5 different control measures. The control measures considered were: (1) PCV2 vaccination of piglets (vac); (2) ensuring age adjusted diet for growers (diets); (3) reduction of stocking density (stock); (4) improvement of biosecurity measures (bios); and (5) total depopulation and repopulation of the farm for the elimination of other major pathogens (DPRP). A model was developed to simulate 5 years production of a pig farm with a 3-weekly batch system and with 100 sows. A PMWS/PCV2SI disease and economic model, based on PMWS severity scores, was linked to the production model in order to assess disease losses. This PMWS severity scores depends on the combination post-weaning mortality, PMWS morbidity in younger pigs and proportion of PCV2 infected pigs observed on farms.The economic analysis investigated eleven different farm scenarios, depending on the number of risk factors present before the intervention. For each strategy, an investment appraisal assessed the extra costs and benefits of reducing a given PMWS severity score to the average score of a slightly affected farm. The net present value obtained for each strategy was then multiplied by the corresponding probability of success to obtain an expected value. A stochastic simulation was performed to account for uncertainty and variability.For moderately affected farms PCV2 vaccination alone was the most cost-efficient strategy, but for highly affected farms it was either PCV2 vaccination alone or in combination with biosecurity measures, with the marginal profitability between ‘vac’ and ‘vac+bios’ being small. Other strategies such as ‘diets’, ‘vac+diets’ and ‘bios+diets’ were frequently identified as the second or third best strategy. The mean expected values of the best strategy for a moderately and a highly affected farm were £14,739 and £57,648 after 5 years, respectively.This is the first study to compare economic efficiency of control strategies for PMWS and PCV2SI. The results demonstrate the economic value of PCV2 vaccination, and highlight that on highly affected farms biosecurity measures are required to achieve optimal profitability. The model developed has potential as a farm-level decision support tool for the control of this economically important syndrome.

Highlights

  • Porcine circovirus type 2 (PCV2), a small, nonenveloped, single stranded DNA virus, is the causative agent of several pathological conditions in the pig population worldwide

  • The results demonstrate the economic value of PCV2 vaccination, and highlight that on highly affected farms biosecurity measures are required to achieve optimal profitability

  • The disease increases the level of post-weaning mortality, which is often used as a reference parameter for the diagnosis of post-weaning multi-systemic wasting syndrome (PMWS) (Segales et al, 2003)

Read more

Summary

Introduction

Porcine circovirus type 2 (PCV2), a small, nonenveloped, single stranded DNA virus, is the causative agent of several pathological conditions in the pig population worldwide Among these conditions, post-weaning multi-systemic wasting syndrome (PMWS) is considered to be the most important (Baekbo et al, 2012). In addition to PMWS, a proportion of PCV2 infected pigs develops a subclinical condition These pigs, not apparently ill, have a reduced growth rate and are believed to be more susceptible to other pathogens (Opriessnig et al, 2007; Segales, 2012). In consequence, they contribute to the increase in post-weaning mortality. Their economic cost for the English pig industry was estimated around £88 million per year during the epidemic stage, and around £52.6 million during the endemic years prior the introduction of PCV2 vaccines (Alarcon et al, submitted for publication)

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.