Abstract

Infection with Streptococcus agalactiae causes mortality and major economic losses in Nile tilapia (Oreochromis niloticus) farming worldwide. In Brazil, serotype strains Ia, Ib and III have been isolated in streptococcosis outbreaks, but serotype Ib is the most prevalent. Vaccination is considered an effective method to prevent economically-important diseases in aquaculture and has been associated with decreased use of antibiotics and improvements in fish survival. We developed a flexible partial-budget model to undertake an economic appraisal of vaccination against Streptococcus agalactiae in Nile tilapia farmed in net cages in large reservoirs. The model considers the benefits and costs that are likely to be associated with vaccination at the farm-level, in one production cycle. We built three epidemiological scenarios of cumulative mortality attributable to S. agalactiae (5%, 10%, and 20%, per production cycle) in a non-vaccinated farm. For each scenario, we applied a stochastic model to simulate the net return of vaccination, given a combination of values of “vaccine efficacy”, “gain in feed conversion ratio”, “feed price”, “fish market price “, and “cost of vaccine dose”. In the 20% cumulative mortality scenario, the net return would break-even (benefits ≥ costs) in at least 97.9% of interactions. Should cumulative mortality be lower than 10%, the profitability of vaccination would be more dependent on better feed conversion ratio. The inputs “feed price” and “cost of vaccine” had minor effects on the output, in all pre-vaccination mortality scenarios. Although our simulations are based on conservative values and consider uncertainty about the modeled parameters, we conclude that vaccination against S. agalactiae is likely to be profitable in Nile tilapia farms, under similar production conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call