Abstract

A multiyear regional risk programming model was used in evaluating the impacts of different environmental policies on cropping systems, input use, nonpoint source pollution, farm income, and risk. A direct expected utility maximizing problem (DEMP) objective with a Von Neuman Morgenstern utility function was used in deriving optimal cropping systems. A biophysical simulation model provided input for the optimization. Three types of policies—taxing, regulating the aggregate, and regulating the per acre level—were studied for two farm inputs—nitrogen and atrazine. It was observed that policies had varied and multiple cross-effects on pollutant loads, farm income, and risk. This information is crucial in developing successful policies toward improving water quality. If an appropriate input policy is chosen, both targeted and nontargeted pollutant loads can be managed. The three policies varied in their effects on pollutant loads and involved tradeoffs in water quality and economic attributes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.