Abstract

Leaf economic and hydraulic theories have rarely been applied to the ecological differentiation of speciose herbaceous plant radiations. The role of character trait divergences and network reorganization in the differentiation of the functional types in the megadiverse Neotropical Bromeliaceae was explored by quantifying a range of leaf economic and hydraulic traits in 50 diverse species. Functional types, which are defined by combinations of C3 or Crassulacean acid metabolism (CAM) photosynthesis, terrestrial or epiphytic habits, and non-specialized, tank-forming or atmospheric morphologies, segregated clearly in trait space. Most classical leaf economic relationships were supported, but they were weakened by the presence of succulence. Functional types differed in trait-network architecture, suggesting that rewiring of trait-networks caused by innovations in habit and photosynthetic pathway is an important aspect of ecological differentiation. The hydraulic data supported the coupling of leaf hydraulics and gas exchange, but not the hydraulic safety versus efficiency hypothesis, and hinted at an important role for the extra-xylary compartment in the control of bromeliad leaf hydraulics. Overall, our findings highlight the fundamental importance of structure-function relationships in the generation and maintenance of ecological diversity.

Highlights

  • Leaf economic and hydraulic theory have rarely been applied to the ecological differentiation of speciose herbaceous plant radiations

  • Bromeliaceae was explored by quantifying a range of leaf economic and hydraulic traits in 50 diverse species

  • Functional types, which are defined by combinations of C3 or Crassulacean acid metabolism (CAM) photosynthesis, terrestrial or epiphytic habits, and non-specialised, tank-forming or atmospheric morphologies, segregated clearly in trait space

Read more

Summary

Objectives

We aimed to test whether the evolution of external and internal water-storage systems have provided contrasting routes to drought avoidance in terrestrial and epiphytic bromeliads, and if succulence has weakened the coupling of LMA with other leaf economic traits due to its association with specialised nonphotosynthetic hydrenchyma (Grubb et al, 2015)

Methods
Findings
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call