Abstract

A precise, scalable, and computationally efficient mathematical framework is proposed for region-wide autonomous electric vehicle (AEV) fleet management, sizing and infrastructure planning for urban ride-hailing services. A comprehensive techno-economic analysis in New York City is conducted not only to calculate the societal costs but also to quantify the environmental and health benefits resulting from reduced emissions. The results reveal that strategic fleet management can reduce fleet size and unnecessary cruising mileage by up to 40% and 70%, respectively. This alleviates traffic congestion, saves travel time, and further reduces fleet sizes. Besides, neither large-battery-size AEVs nor high-power charging infrastructure is necessary to achieve efficient service. This effectively alleviates financial and operational burdens on fleet operators and power systems. Moreover, the reduced travel time and emissions resulting from efficient fleet autonomy create an economic value that exceeds the total capital investment and operational costs of fleet services.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.