Abstract

The threat posed by Climate Change demands urgent action on finding clean energy solutions with a view to cutting fossil fuel consumption. However, a sudden stop in the use of fossil fuels is not possible without a profound disruption of the economy. This transition is expected to take several decades, and therefore every type of renewable energy should be considered as part of the solution mix. In this work, we propose including gasoline synthesized from atmospheric CO2 as one possible interim solution while the transition away from liquid fossil fuels intensifies. To that end, we have designed a novel process that produces green gasoline in one stage on an industrial scale. This contrasts with the two or three stages needed in the classical Fischer-Tropsch based processes. Furthermore, we have optimized this process through mass and heat integration, and propose three different options that make the most of the waste streams. Finally, we have studied a total of 144 realistic scenarios that take into account the origin of H2 and CO2 as well as their environmental impacts and costs. According to our findings, such a process will be capable of producing high-quality gasoline to be manufactured competitively in the near future. The significance of our findings is that it is realistic to reduce carbon emissions while also promoting the circular economy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call