Abstract

One dimensional steady state mathematical model has been developed for study the thermal behavior of two types of flat-plate solar air heating collectors. The model allows demonstration the influence of the collector's dimension leading to optimize the length of the collector. The model implemented numerically using finite-difference technique with mass flow rate of 0.01 kg/s per unit area of solar collector and the incident solar radiation equal to 900W/m2. The analysis has been done for a large range of areas. Illustrative results such as the temperatures of the components of the collectors (glass cover, absorber plate, air flowing through the collector and the rear plate), efficiency and useful heat extracted from the collector are graphically presented. The obtained results from both the energetic and economic analysis showed that, for the first type of the flat-plate solar air heating collector, the optimum length is 4.05 meters, moreover, it dawdles its energy collected past for lengths greater than 6 meters. There is no optimum length for the second type, but there is no much energy gain for lengths greater than 6 meters anyhow, the economic analysis showed that the length must be greater than 2.5 meters for both types of collectors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.